Developments In Practice And Art Of Telephotography

Saturday, December 11, 1920
Archived Page: 

December ll, 1ti20_ ELECTRIC`AL REVIEW nl; evelopments in Practice and Art of Telephotography Advancement in Science of Photography and Telegraphy Combined to Perfect Transmission of Photographs-Early Inventions_Improved and Applied to Modern Conditions - Television to Be Next Step By NIKOLA TesLA 'l`he recent successful experiments by Edouard Belin of Paris in the transmission of photographs between New York City and St. Louis, a distance of 1000 miles, have naturally aroused new inter- est in this rather old art. Mr. l'lelin’s apparatus has been examined with a knowledge of previous efforts in' that direction, and it must be admitted that the French inventor has achieved n marked improvement. It is ti'ue that -his apparatus in many of its features is old and well known, but all the 'details have been worked out skilfully and his photographic reproductions are not only good likenesses of the originals but are expressive in no small degree. In common with other arts the transmission of pictures to a distance has been brought to its present state of perfection by slo\v and gradual improvements effected in the course of 77 years. The literature on the subject is quite voluminous and difficult to peruse, as the articles are published in various languages and scattered through mnnerous periodicals. Only one complete and exhaustive work has been pub- lished in German by Dr. Arthur Korn of Munich and Dr. Bruno Glatzel. lfnasr P/\'l`lEN'l`S TAKEN Our MANY Ytziuts Aco. The original idea is due to Alexander Bain, a Scotch mechanician, who secured a British patent disclosing the invention in 1843, His plan con- templated the transmission of printed letters, drawings and pictures in the following way: At the sending station a holder with insulated metal points \vas arranged to glide in the direction of the lines over a frame resting on the printed page to be reproduced at a distance. Within this frame, and at right angles to its plane, a number of short wires were imbedded in sealing wax, their lower ends being in contact with the letters which in turn \vere all electrically connected. As the holder moved back and forth the insulated metal points would be brought in and out of contact with the upper ends of the short \vires, thus con- trolling the How of the current through them. Each metal point was joined by a special line to the receiving station where there was a similar holder made to slide over chemically prepared paper 'laid on a grounded metal plate. When a battery at the transmitting end \vas connected \vith one of its poles to the letters and the other to the ground the current impulses traversing the line wires and the chemical paper would cause changes of color in the latter, thus reproducing the characters. /\ great number of points and _line wires \vei'e required to attain szitisfactorv results and, realizing this objection, Bain pro- posed to avail himself of only one wire, but did not give full information in this regard. Subse- quently Bonnelli and other inventors made im- provements in his apparatus, reducing the num- ber of the wires to a few. There is no doubt that, despite the manifest crudity of this system, it was quite capable of being used commercially in the transmission of type as well as drawings and pictures and may yet be found valuable. The first practical success was achieved by an Englishman, Frederick Collier Bakewell, who se- cured a British patent in 1847 on a process, some features of_which have proved to be indispensable in later years. He employed as a transmitter a cylinder on which the characters were written with insulating ink. A metal point bore on the cylinder and advanced slightly with each revolu- tion of the same exactly as in the older form of phonograph. A similar cylinder covered 'with chemical paper and equipped with a sliding point was provided at the receiving station. The cylin- ders being grounded and a battery included in the line wire connecting the transmitting and receiv- ing points, the passage of the current resulted in a discoloration of the paper and reproduction of the written characters at the receiving end. Con- sidering the period Bakewell’s apparatus was surprisingly perfect, particularly in the feature of maintaining the rotating cylinders in synchro- nism for which purpose he provided an automatic as well as a hand correction. A controversy was waged between Bakewell and Bain for the honor of priority, but in this respect there can be nn mistake. Bain was the originator of the idea, while Bakewell was the first to carry it out suc» cessfully. Usnior Criciurcin. PAPER Consioeruzo lmrnac- Treat.. The use of chemical paper was considered ob- jectionable,-and in 1851 Hipp eliminated it, pro- ducing the impressions at the receiver with a magnet actuated by the transmitted-impulses. It is curious, though, to observe that the modern art depends entirely on this very device. In 1855 Casselli modified the Bakewell apparatus by em- ploying carefully synchronized pcndulums at the transmitting and receiving stations, thus replacing the rotary motion by a to-and-fro movement as in the Bain arrangement. Casselli seems to have had more enterprise than his predecessors, and the apparatus which he perfected in 1860 was actually used with some success for a short time in service between Paris and several other cities in France. lts abandonment \vas probably due to

924 ELECTRICAL REVIEW V0l~77-N°-24- the slowncss of transmission and lack of demand for this kind of facility. It is singular that many treatises on physics and other text books mention Casselli while ignoring Bain and Bakewell. Shortly after this Meyer perfected a system which was used with success in France, and may be fairly considered as the first thoroughly prac- tical application of ideas in this field. A curious improvement was made by Gérard who, in 1865, proposed_ the use of flat disks in place of the cylinders of Bakewell. Ever since one wire was adopted for the transmission it became an impera- tive necessity to maintain perfect synchronism between the transmitter and receiver, and many inventors devoted their energy to this task. D’Arlincourt resorted to tuning forks, and his idea was subsequently carried out in a more per- fect manner by Lacour. At about this time the invention reached America, and in 1870 Sawyer brought his ingenuity to bear on the evolution of a process in which he employed zinc clichés. These were very reliable and constituted a signal advance. In 1880 Edison devised an apparatus on the principle of that used by Sawyer, except that the impressions were produced on paper in bas-relief. This idea was carried further by Dennison in instruments of the reciprocating type. Through the introduction of the Tesla alternating system of power transmission a novel means was afford- ed for operating transmitters and receivers. The use of synchronous motors was proposed first in 1893 by Shcehy. DEVELOPMEN'l`S l'Ea1\i1r USE or PHOTOGRAPHIC FILMS. In all cases without exception it was necessary to provide an actual print, drawing or sketch to be transmitted until Lenoir introduced photo- graphic films into the art, making possible the transmission of any kind of picture, This was a great step forward, but the honor of the first practical success belongs to an American engineer, N. Amstutz, who used photographic sending clichés in relief for the first time and with com- plete success. Amstutz was a true pioneer, and his improvement is essential in the carrying out of the modern processes. It is true that as early as 1865 a Frenchman, Hubert, had suggested the use of letters written with thick ink, but this was of little value, and Amstutz was undoubtedly the first to produce and use the clichés on which the up-to-date art vitally depends. Perfectly satis- factory demonstrations were made with his devices in this country more than zo years ago, when pictures were transmitted over telegraph wires to great distances. Samples of his work have been preserved which clearly show how much he was ahead of his time. Following Amstutz, Dunlany, Palmer, Mills and other American inventors took up picture transmission with more or less success. By this time the necessity presented itself for increasing the rapidity of the process by greater speed of the devices as well as multiplex transmission, The Belgian inventor, Carbonelle, made an impor- tant improvement in this direction when he in- troduced the telephone diaphragm carrying a stylus for making the impressions. Of all inventors, however, Dr, Korn was the most successful as well as prolific in the sugges- tion of improvements, his photographic method of recording carried out in 1903 being the most significant. The general idea of photographic recording had been already advanced by George Little, and a few years later, Dillon took out a patent involving the use of sensitized paper and a mirror retiecting a beam of light on the same. But it is obvious that at that time it would have been hardly practicable to use this suggestion, as photography was not sufiiciently advanced. In illustration of this it may be mentioned that in I8Q2 the attention of the scientific world was directed to a wonderfully sensitive receiver, con- sisting of an electron stream maintained in a delicately balanced condition in a vacuum bulb, by means of which it was proposed to use pho- tography in the transmission of telegraphic and telephonic messages through the Atlantic cables, and later also by wireless. This proposal was met by unsurmountable objections to the pho- tographic method. Indeed, the Belin process has been rendered possible largely through the great improvements in the sensitive films which have been evolved in response to the urgent demands of the motion picture and also under the stimulus of the recent war. SELENIUM CELL AND VACUUM TUBE USED TO TRANSMIT AND RECEIVE. In the apparatus invented by Dr. Korn a selen- ium cell is used at the transmitter to vary the in- tensity of the sending current, and at the receiving station he employs a vacuum tube of high inten- sity which throws its light through a fine slot on a sensitive plate. The tube is excited by high- frequency currents supplied from a Tesla trans- former and may be flashed up

DeCem\>er11.1920. ELECTRICAL REVIEW 925 having its surface coated with a thin shellac solu- tion, wrapping a carbon print of the photograph about it with its face to the cylinder and im- mersing the whole in hot water, this causing the gelatine to adhere to the cylinder surface in pro- portion to the degree of blackness so that a like- ness of the print in bas-relief is obtained. On this cylinder bears the stylus of a microphone diaphragm which is slowly moved forward by the revolution of the cylinder as in a phonograph. ‘ 4 3g;_1.€ts. ~ vt wi = ’ »t~ ~‘ ~ : 153: ~$.?»¥' I l`?§‘§Q§ ., ` E , ,_> .li I ` _ ' . i’af~2‘._-» ~< ' 5'Y:».§ `=.E°.. ~ ' - ~ ' ff ” G V"` ~"‘*` M. ` Edouard Belln and Hls Device for Trlnrmlnlnn ol Photographs. In this manner the pressure ot the carbon con- tacts is varied in conformity with the changes of the surface, and the microphone currents pass over the transmitting wire to the receiving station where ,theycause corresponding dellections of a mirror forming part of a highly sensitive dead- beat oscillograph. A strong beam of light re- flected from the mirror traverses a screen gradu- ated from 'full transparency to opacity and is led through a microscopic opening to the sensi- tive tilm wrapped around the receiving cylinder. Special provisions are made to keep the cylinders exactly in step as this is indispensable to good performance. The film is, of course, protected against the external light, and when the operation is completed it is developed as_usual so that either a positive or negative print is obtained according to the position of the screen. There is nothing in his apparatus which is funda- mentally novel; in fact, every feature of the same has been disclosed in the prior art. Even the graduated scrcwcn, which is one of the most essential parts, has been employed before by Dr. Korn. But Mr. Belin has displayed considerable ingenuity and skill in all the details, and his re- produced photographs are most excellent. There is every reason to believe that his ettorts will be rewarded by an extensive practical application of his devices. TEI.liVlSlON 'ro lite Nizxr STEP IN Pnooiuass or TRANSMISSION. The transmission of photographs constitutes only the first step towards the immeasurably greater achievement of television. By this is meant instantaneous transmission of visual im- prcssions to any distance by wire'or wireless. It is a subject to which I have devoted more than 25 years of close study. Two of the impediments \vhich years ago seemed unsurmountable have been successfully overcome, but great difticulties are still in the,way. These are encountered in the inertia of the sensitive cells and the enormous speed required to make possible the vision oi persons, objects or scenes as in life. It is the problem of constructing a transmitter analogous to the lens and retina of the eye, providing a medium of conveyance corresponding to the optic nerve, and a receiver organized similarly to the brain. It is a gigaptic task, but I am confident that the world will witness its actual accomplish- ment in the near future,